

Declaration of Conflicts of Interest

- Fully employed by University of Dundee (UoD).
- WHO paid honorarium to be Chair of group and paid travel/accommodation/expenses.
- Editor in Chief of MHR (honorarium and expenses)
- Grant funding from MRC.
 - UoD Patent sperm stimulation.
- Give occasional lectures that are company/society sponsored : pay travel/accommodation/expenses sometimes small honorarium.
- Cambridge University Press 2 edited books.
- I'm not on any company board or have a single share in anything or anybody.

Background – some queries. In overwhelming majority of cases aneuploidy (autosomal) associated with female. But specific associations with male Helen this am : 15%, 80% 45%. In the context of ART is there a higher risk and can this be managed? Sociations of aneuploidy spermatozoa higher in sub fertile men? Yes but very variable data (20+55 tudies). Bo sub fertile men normally present higher chance of aneuploidy in foetus/offspring e.g. LSI (Bonduelle et al. 20+55 tudies). Interesting examples (47XXY; Globozoospermia; very specific sperm abnormalities; Trisomy 21). What can be done ? (apart from PGD)

Specific studies : Paternal contribution to aneuploidy in embryos

Retrospective cohort study 3835 embryos from 629 couples Aneuploidy in trophectoderm from IVF and ICSI (normal and oligo) (CCS)

Variable	Group using their own eggs			Group using donor eggs			number	P value
	Standard IVF	ICSI, normal sperm	ICSI oligozoos permia	Standard IVF	ICSI, normal sperm	ICSI oligozoospermia		
Mean matemal age (y) No. of cycles No. of embryos Embryos for biopsy, mean	35.5 77 385 5	35.3 262 1,300 5	35.3 31 114 3.7	24.9 25 208 8	25.0 222 1,743 7.9	25.0 12 85 7.1	629 3,835	
Total aneuploidy (%/embryo) Total with autosomal aneuploidy (%/embryo)	158 (41) 155 (40)	477 (37) 466 (39)	53 (46) 51 (45)	44 (21) 42 (20)	394 (23) 384 (22)	23 (27) 19 (22)	1,307 1,117	NS NS
Total (%) with sex chromosome aneuploidy	8 (2.1)	22 (1.6)	7 (6.1)*	3 (1.4)	35 (2.0)	5 (5.9)**	40	*0.00
Individual aneuploidies	XXX XO ×3 XXY ×3 XYY	XO ×12 OY XXYY XXX ×4 XXY ×2 XYY ×2	XO ×5 XXY XXX	XO ×2 XXY	XO ×20 OY ×2 XYY ×2 XXY ×9 XXX ×2	XO ×2 XXY ×2 OY		

Summary/discussion from Coates et al.

- As examined IVF and ICSI indicated ICSI procedure itself not a significant variable.
- Maternal age not a variable as same in donor vs own egg group.
- Oligozoospermia significantly associated with aneuploidy in embryos by implication paternal. As 47 XXX (5% paternal), 47 XXY (50%), 45XO(~75%), 47 XYY (100%) if paternal effect in study would see fewer 47XXX and 450Y. This is case (10/12 not these)
- However parent (and phase) of origin analysis is required.

KS (XXY) syndrome

• Common disorder ~ 1:600 males ; ~10% have mosaic

EAU Guidelines (Jungwirth et al., 2012 Eur Urol. 62:324) Significant contribution from XXY

Diagnosis	Unselected 12,945	Azoospermic 1446
Idiopathic	30.3 %	13.3%
KS (XXY)	2.6%	13.7%
Y deletions	0.3%	1.6%

Significant component unknown.

So what can we do (except PGD) Selecting the optimal cell

- In vivo ? And lessons
- In vitro : favourite protein/concept/idea.

Mate (gamete) selection in animals

Very sophisticated with somewhat of an evolutionary arms race pre and post copulation.

All aimed at selection of the fittest sperm cell

The fundament	al truth	
Current	?×~~~~	Poor quality cells=Reduced
	?	 FR Embryo dev Implantation rate CPR
Future		5. LBR
	(x)	
	vv	

Summary Specific groups with increased risk: Is the proportion of aneuploidy spermatozoa higher in sub fertile men? Yes but very variable data. Do sub fertile men normally present higher chance of aneuploidy in foetus/offspring e.g. (SS yes.) Recent evidence for a paternal contribution to aneuploidy in human embryos (CCS). Particular interesting examples (47XXY). Many scientific queries BUT. Female tract selection – possible lessons but yet to exploit these and perform detailed experiments.

