

INTERCHROMOSOMAL EFFECT DEFINITION

Reprogenetics

Interchromosomal effect (ICE) is the disruption of meiotic behavior of chromosomes not involved in a structural rearrangement favoring the non-disjunction of such chromosomes

INCIDENCE OF TRANSLO INVERSIO	Reprogenetics	
TRANSLOCATIONS: RECIPROCAL TRANSLOCATIONS	0.16%	
INVERSIONS: PERICENTRIC INVERSIONS	0.012-0.07%	
PARACENTRIC INVERSIONS	0.01-0.05%	

STUDIES ON ICE	Reprogenetics
FISH STUDIES IN SPERM:	
- Altered segregation pattern and numerical chromosome interrelate in spermatozoa from Robertsonian translocati Godo et al, 2015	e abnormalities ion carriers.
- Interchromosomal effect analyses by sperm FISH: incide distribution among reorganization carriers. Anton et al, 2	ence and 2011
FISH STUDIES IN EMBRYOS:	
- Negligible interchromosomal effect in embryos of Robe translocation carriers. Munne et al, 2005	rtsonian
- Possible interchromosomal effect in embryos generated from translocation carriers. Ginaroli et al, 2002	d by gametes
CCS TECHNIQUES IN EMBRYOS:	
- Embryos of robertsonian translocation carriers exhibit a interchromosomal effect that enhances genetic instability development. Alfarawati et al, 2012	a mitotic y during early

STUDIES ON ICE Reprogenetics FISH STUDIES IN SPERM: - Godo et al, 2015 → ICE linked to some segregation products for Robertsonian translocation carriers - Anton et al, 2011 → Study several types of abnormalities, more ICE in translocations, less ICE in inversions

S	TUDIES ON ICE	Reprogenetics
FISH STUDIES IN S	PERM:	
- Godo et al, 2015 →	ICE linked to some segregation products translocation carriers	for Robertsonian
- Anton et al, 2011 →	Study several types of abnormalities, translocations, less ICE in inversions	more ICE in
FISH STUDIES IN E	MBRYOS:	
- Munne et al, 2005 $ ightarrow$	No ICE for Robertsonian translocations in blast	omere biopsies
- Ginaroli et al, 2002 🗲	Possible ICE for reciprocal translocations	

S	TUDIES ON ICE	Reprogenetics
FISH STUDIES IN S	PERM:	
- Godo et al, 2015 →	ICE linked to some segregation products translocation carriers	for Robertsonian
- Anton et al, 2011 →	Study several types of abnormalities, translocations, less ICE in inversions	, more ICE in
FISH STUDIES IN E	MBRYOS:	
- Munne et al, 2005 → - Ginaroli et al, 2002 →	No ICE for Robertsonian translocations in blas Possible ICE for reciprocal translocations	stomere biopsies
CCS TECHNIQUES		
- Alfarawati et al, 2012 🚽	ICE in Robertsonian translocations at mitotic least strain translocati least strain translocations at mitotic least strain transloca	evel

LATEST STUDIES ON ICE BY REPROGENETICS-USA Is Interchromosomal Effect (ICE) Related to the Sex of the Translocation Carrier? Escudero et al, 2015 Types of Abnormal Embryos in Inversion Cases. Suhotliv et al, 2015 The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers. Escudero et al, 2016 (submitted)

Sex of the Translocation Carrier?										
	Female carrier	Percentage	Male Carrier	Percentage	p value					
Normal or Balanced	46	17.90%	54	17.88%	ns					
Jnbalanced	155	60.31%	166	54.97%	ns					
Other Abnormalities	34	13.23%	62	20.53%	p<0.05					
No Result	22	8.56%	20	6.62%	ns					
lotal	257		302							
Average maternal age	e for female ca	arrier group is	33.62							

Is Interchromosomal Effect (ICE) Related to the Sex of the Translocation Carrier?

	Female carrier	er Percentage Male		Percentage	p value
Normal or Balanced	46	17.90%	54	17.88%	ns
Unbalanced	155	60.31%	166	54.97%	ns
Other Abnormalities	34	13.23%	62	20.53%	p<0.05
No Result	22	8.56%	20	6.62%	ns
Total	257		302		

Average maternal age for female carrier group is 33.62 Average maternal age for male carrier group is 33.69

	Female carrier	Percentage	Male Carrier	Percentage	p value
Normal or Balanced	46	17.90%	54	17.88%	ns
Jnbalanced	155	60.31%	166	54.97%	ns
Other Abnormalities	34	13.23%	62	20.53%	p<0.05
No Result	22	8.56%	20	6.62%	ns
ſotal	257		302		
Average maternal age	e for female ca	arrier group is	33.62		

Is Interchromosomal Effect (ICE) Related to the Sex of the Translocation Carrier?

- Male translocation carriers have a significantly higher chance of having abnormalities unrelated to the chromosomes involved in the translocation compared female translocation carriers

Reprogenetics

- Because female translocation carriers produce a higher proportion of unbalanced embryos (though no significantly higher), the proportion of abnormal embryos in both groups is the same

pes of Abnormal Embryos in Inversion Cases Reprogenetics									
	Inversion	%	Translocation	%	p value				
Normal or Balanced	32	25.2%	100	17.9%	ns				
Unbalanced	38	29.9%	321	57.4%	p<0.001				
Other Abnormalities	52	40.9%	96	17.2%	p<0.001				
No Result	5	3.9%	42	7.5%	ns				
Total of embryos	127		559						

Average maternal age for translocation carrier group is 32

	Inversion	%	Translocation	%	p value
Normal or Balanced	32	25.2%	100	17.9%	ns
Unbalanced	38	29.9%	321	57.4%	p<0.001
Other Abnormalities	52	40.9%	96	17.2%	p<0.001
No Result	5	3.9%	42	7.5%	ns
Total of embryos	127		559		

pes of Abnormal Embryos in Inversion Cases Reprogenetics									
INVERSION CASES BY AGE									
	Under 35 y.o.	%	35 y.o. or over	%	p value				
Normal or Balanced	17	27.0%	15	23.4%	ns				
Unbalanced	18	28.6%	20	31.3%	ns				
Other Abnormalities	24	38.1%	28	43.8%	ns				
No Result	4	6.3%	1	1.6%	ns				
Total	63		64						

The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers

PGS group (normo-chromosome patients):

- 12,790 cycles
- 68,861 embryos
- 1,583,803 pair of chromosomes studied
- Average maternal age: 35.4 y.o.

PGD group (reciprocal translocation carriers):

- 199 cycles
- 1,184 embryos
- 24,339 pair of chromosomes studied
- Average maternal age: 33.4 y.o.

The	The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers									
chro	PGS	PGD	P values		chro	PGS	PGD	P values		
1	3.51%	4.96%	0.025		13	4.12%	3.60%	NS		
2	3.70%	3.53%	NS		14	3.82%	2.64%	NS		
3	2.50%	2.34%	NS		15	6.40%	4.48%	0.01		
4	3.26%	2.95%	NS		16	8.26%	7.85%	NS		
5	2.98%	2.76%	NS		17	3.16%	2.28%	NS		
6	2.73%	2.81%	NS		18	4.23%	3.08%	NS		
7	3.44%	3.00%	NS		19	5.03%	2.72%	0.001		
8	3.32%	2.74%	NS		20	4.08%	3.12%	NS		
9	3.75%	3.15%	NS		21	6.69%	4.41%	0.005		
10	3.33%	3.34%	NS		22	8.59%	6.20%	0.01		
11	3.44%	2.89%	NS		XY	3.95%	4.25%	NS		
12	2.49%	2.56%	NS		тот	4.21%	3.56%	0.001		

The v	The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers										
	Patients below 35 y.o.										
chro	PGS	PGD	P value		chro	ANE	RECT	P value			
1	3.39%	5.77%	0.005		13	2.99%	3.51%	NS			
2	3.05%	2.85%	NS		14	2.79%	2.72%	NS			
3	2.19%	2.46%	NS		15	3.24%	3.57%	NS			
4	2.74%	3.19%	NS		16	6.01%	6.19%	NS			
5	2.51%	2.40%	NS		17	2.06%	1.83%	NS			
6	2.28%	2.97%	NS		18	2.77%	2.61%	NS			
7	2.66%	2.02%	NS		19	2.75%	2.27%	NS			
8	2.61%	2.53%	NS		20	2.98%	2.74%	NS			
9	3.04%	3.13%	NS		21	3.68%	3.18%	NS			
10	2.67%	3.47%	NS		22	4.53%	4.22%	NS			
11	2.32%	2.90%	NS		XY	3.70%	3.86%	NS			
12	2.00%	2.35%	NS		тот	3.00%	3.16%	NS			

The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers										
Patients 35 y.o. or over										
chro	PGS	PGD	P value		chro	ANE	RECT	P value		
1	3.69%	3.77%	NS		13	5.35%	3.68%	NS		
2	4.36%	4.52%	NS		14	4.93%	2.48%	0.05		
3	2.83%	1.90%	NS		15	9.54%	5.70%	0.025		
4	3.88%	2.46%	NS		16	11.16%	10.25%	NS		
5	3.54%	3.03%	NS		17	4.29%	2.94%	NS		
6	3.12%	2.56%	NS		18	5.83%	3.74%	NS		
7	4.21%	4.58%	NS		19	7.39%	3.17%	0.005		
8	4.09%	3.00%	NS		20	5.31%	3.67%	NS		
9	4.60%	3.14%	NS		21	9.92%	6.28%	0.025		
10	4.07%	2.84%	NS		22	13.23%	8.69%	0.01		
11	4.61%	2.86%	NS		XY	4.31%	4.57%	NS		
12	3.08%	2.61%	NS		тот	5.54%	4.04%	0.001		

The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers

Reprogenetics

CONCLUSIONS:

- The comparison of the younger subgroups did not reveal any statistic differences in the overall rates and only chromosome 1 showed a marked increase of aneuploidy

- The comparison of the older subgroups showed an overall decrease in the aneuploidy rate in the subgroup of PGD patients (translocation carriers), and in the analysis chromosome by chromosome, chromosomes 14, 15, 19, 21, and 22 showed statistically significant reduction of the aneuploidy rate in this subgroup

- This suggests that translocation carriers do not have an altered meiotic patter that will subsequently lead to an increase of aneuploidy in most chromosomes. Just chromosome 1 appears to be affected for such phenomena and just in patients less than 35 yo.

The weight of the Interchromosomal Effect in Reciprocal Translocation Carriers

CONCLUSIONS:

- In counseling reciprocal translocation carrier patients in regards to aneuploidy, it is fair to state that younger patients do not have a significant increase of aneuploidy due to the presence of this type of translocation. The aneuploidy rate per chromosome for these patients is 3.1%, while for patients with normal chromosome is 3.0%

- Older patients actually have a reduction of an euploidy when compared with patient with normal chromosomes, from a 5.5% per chromosome to a 4.0% per chromosome

Reprogenetics

- Reciprocal translocation does not show interchromosomal effect, but...

Overall Conclusions on Interchromosomal Effect

- Reciprocal translocation does not show interchromosomal effect, but...
- ICE might be sex dependant and with enhanced presence in male carriers

Reprogenetics

- Reciprocal translocation does not show interchromosomal effect, but...
- ICE might be sex dependant and with enhanced presence in male carriers
- ICE might be reversed in female carriers

Overall Conclusions on Interchromosomal Effect

- Reciprocal translocation does not show interchromosomal effect, but...
- ICE might be sex dependant and with enhanced presence in male carriers
- ICE might be reversed in female carriers
- ICE might be reduced or even reversed with age

- Reciprocal translocation does not show interchromosomal effect, but...
- ICE might be sex dependant and with enhanced presence in male carriers

Reprogenetics

- ICE might be reversed in female carriers
- ICE might be reduced or even reversed with age
- Chromosome 1 seems to be greatly affected by ICE in young carriers
- ICE might be more present in other types of structural abnormalities like inversions

- Reciprocal translocation does not show interchromosomal effect, but...
- ICE might be sex dependant and with enhanced presence in male carriers
- ICE might be reversed in female carriers
- ICE might be reduced or even reversed with age
- Chromosome 1 seems to be greatly affected by ICE in young carriers
- ICE might be more present in other types of structural abnormalities like inversions
- We are just starting to understand ICE

Repr	Reprogenetics	
Scientists Jacques Cohen, PhD (US) Santiago Munné, PhD (US) Dagan Wells, PhD (UK) M. Konstantinidis, PhD (US) Lia Ribustello (US) Mireia Sandalinas, PhD (Spain) Renata Prates (US) Samer Alfarawati, PhD (UK) Souraya Jaroudi, PhD (UAE)	Lab & Medical Directors Pere Colls, PhD (US) Carles Gimenez, PhD (Spain) Elpida Fragouli, PhD (UK) Karsten Held, MD (Germany) Tetsuo Otani, MD (Japan) Muriel Roche, PhD (Japan) Braulio Peramo, MD (UAE) Ahmed Yesilyurt, MD (Turkey) Xuezhong Zheng, MD (China)	Embryologists Kelly Ketterson Catherine Welch Tim Schimmel Genetic Counselors Amy Jordan Erin Armenti Dina Goldberg-Strassler Rachael Cabey
Tomas Escudero (US) Emmeline Liu (US) Ronnie Calpadi (US) J. Horcajadas, PhD (Latin Am.) Luis Guzman, PhD (Peru) N'Neka Goodall (US) Sophia Tormasi (US) Allen Kung (US)	Francisco Rocha, PhD (Mexico) Christian Alvarez Sedo, PhD (Arg munn www	entina) e@reprogenetics.com w.reprogenetics.com