

A Statement on the use of Preimplantation Genetic Screening (PGS) of chromosomes for IVF patients **CONSENSUS STATEMENT ON PGS** For all practitioners of IVF there is the clinical imperative > to achieve the highest chance of a live birth per single attempt, reducing the time to delivery for each patient; > to reduce the incidence of miscarriage; reduce the number of multiple pregnancies; > decrease the number of non-viable embryo transfers ('unnecessary IVF transfer cycles'); > eliminate the freezing of embryos that are chromosomally abnormal; > to diagnose patients with no chance to deliver with IVF; and, > given the high incidence of embryo aneuploidy in all IVF cycles, to minimize the chance of transferring an aneuploid embryo. The Undersigned have issued the Statement below and welcome debate and comment in this forum. http://www.ivf-worldwide.com/cogen/general/cogen-statement.html

2016 2:28 P

Technical advancement & limitations

- > Biopsy from D5/6 embryos,
- Specimens undergone WGA (noise and background) and WGA products subject to array or NGS to obtain chromosome copy number analysis
- WGA products subject to array or NGS to obtain chromosome copy number analysis
- Software makes "Call" or "Not to Call", "A SPECILIST" will make the final "CALL" and prepare the report.
- > Variations of unknown significance

UD: 2011-03-07, 7/20/2016 2:28 PM

Detection of Mosaicism

UD: 2011-03-07, 7/20/2016 2:28 PM

Incidence of mosaicism: <u>4%, 16%, 21%, 33% or 69%</u>

3.9%

Johnson et al., (Mol. Hum. Reprod., 2010) observed 49/51 (96.1%) ICM samples were concordant with TE biopsies derived from the same embryos.

~16%

Northrop et al. (Mol. Hum. Reprod., 2010) found 16% of embryos are mosaic.

21.2%

Capalbo et al., (Hum. Reprod. 2013), by FISH reanalysis of previously aCGHscreened blastocysts, a total of 66 aneuploidies were scored, 52 (78.8%) observed in all cells and 14 (21.2%) mosaic.

~33%

Fragouli et al., (Hum. Reprod., 2011) demonstrated that about one-third of all blastocysts are mosaic.

69%

UD: 2011-03-07, 7/20/2016 2:28 PM

Liu et al. (Biol. Reprod., 2012) reported 69% of abnormal blastocysts from women of advanced age are mosaic.

D5/6 Mosaicism

1) Can mosaicism be detected with current array or NGS platform?

2) What do we know in the literature?

3) Are the rates we detected in the biopsied (TE) specimens truly reflecting what is a) in the whole embryo, b) in ICM?

<mark>le 1. Cl</mark> in	ical Outcomes of Single Mosaic Blastocysts Trans	sferred.*		
ient No.	Chromosomal Constitution	Mosaicism† percent	Karyotype‡	Clinical Outcome
1	arr(4)x1,(10)x1	40	46,XX	Baby healthy at birth
2	arr(6)x1,(15)x1	50	46,XX	Baby healthy at birth
3	arr(2)x1	40	46,XX	Baby healthy at birth
4	arr(2)x1	35	46,XY	Baby healthy at birth
5	arr(5)x1	50	46,XX	Baby healthy at birth
6	arr(5)x1,(7)x1	40	46,XX	Baby healthy at birth
7	arr(11)x1,(20)x3,(21)x3	30	NA	No pregnancy
8	arr(1)x1,(6)x3,(10)x3,(12)x3,(13)x3,(14)x3,(21)x3	50	NA	No pregnancy
9	arr(3)x1,(10)x3,(21)x3	35	NA	No pregnancy
10	arr(1)x3	50	NA	Biochemical pregnancy§
11	arr 9p21.2q34.3(26,609,645-140,499,771)x3	45	NA	Biochemical pregnancy§
12	arr(15)x3	30	NA	No pregnancy
13	arr(18)x1	50	NA	No pregnancy
14	arr(18)xl	50	NA	No pregnancy
15	arr(18)xl	40	NA	No pregnancy
16	arr(4)xl	50	NA	No pregnancy
17	arr(5)x3	40	NA	No pregnancy
18	arr 10q21.3q26.3(67,216,644-134,326,648)x3	50	NA	No pregnancy

-Joo Kang, Zev Rosenv Ronald O. Pe York	M.D., Alexis P. Melnick, N waks, M.D. relman and Claudia Cohen C	1.D., Joshua D. Stew	art, M.D., Kangpu Xu, Ph.D e Medicine, Weill Cornell Medi	., D.V.M., cal College, Ne	w York,		
	Table 1						
	Demographic cha	racteristics of F	GS and control cycle	es.			
		Age, ≤37 y			Age, >37 y		
	Characteristic	PGS (n = 99)	Controls (n = 677)	P	PGS (n = 60)	Controls (n = 216)	P
	Age, y	33.9 ± 2.8	32.4 ± 3.2	<.01	40.6 ± 1.5	39.7 ± 1.3	<.01
	BMI, kg/m ²	22.2 ± 6.1	23.1 ± 4.6	.13	23.2 ± 8.3	23.5 ± 4.3	.72
	Gravidity	2.1 ± 1.8	0.94 ± 1.3	<.001	2.75 ± 1.54	1.5 ± 1.92	<.001
	Parity	0.47 ± 0.85	0.27 ± 0.59	.11	0.40 ± 0.59	0.43 ± 0.76	.79
	Previous IVF	1.81 ± 1.76	0.71 ± 1.27	<.001	3 ± 2.82	0.93 ± 1.51	<.001
	Previous abortion	0.95 ± 1.42	0.28 ± 0.61	<.001	1.35 ± 1.57	0.45 ± 0.82	<.001

e Ronald O. Perelman ew York	and Claudia	Cohen Center fo	r Repr	oductive Me	dicine, Weill Co	rnell Me	dical College, New York,						
Table 2 IVF cycle outcomes in wo	men ≲37 years	s old.					Table 3 IVF cycle outcomes in wor	nen >37 years	old.				
	SET			Double ET				SET			Double ET		
Outcome	PGS (n = 62)	Controls (n = 161)	P	PGS (n = 37)	Controls (n = 516)	p	Outcome	PGS (n = 45)	Controls (n = 27)	P	PGS (n = 15)	Controls (n = 189)	P
Age (y)	33.9 ± 2.8	32.3 ± 3.0	<.01	33.9 ± 2.9	32.4 ± 3.3	<.01	Age (y)	40.8 ± 1.7	39.3 ± 1.5	<.01	40 ± 0.85	39.7 ± 1.3	.3
Implantation rate	0.54 ± 0.5	0.54 ± 0.52	.92	0.47 ± 0.40	0.52 ± 0.44	.52	Implantation rate	0.62 ± 0.49	0.37 ± 0.49	.04	0.53 ± 0.30	0.37 ± 0.42	.1
Biochemical pregnancies	6 (9.7)	18 (11.2)	.75	5 (13.5)	62 (11.8)	.79	Biochemical pregnancies	5 (11)	2 (7.4)	.61	1 (6.7)	23 (12.2)	1.
Clinical intrauterine gestations	34 (54.8)	85 (52.8)	.78	23 (62)	334 (64.7)	.75	Clinical intrauterine gestations	28 (62.2)	10 (37.0)	.04	13 (86.7)	97 (51.3)	<
Missed/spontaneous abortions	3 (4.8)	9 (5.6)	.82	0(0)	25 (4.8)	.17	Missed/spontaneous abortions	2 (4.4)	5 (18.5)	.051	1 (6.7)	16 (8.5)	1
Live births	31 (50)	76 (47)	.71	23 (62)	309 (59.9)	.79	Live Births	26 (57.8)	5 (18.5)	<.01	12 (80)	81 (42.9)	4
Twins	0	2 (1.2)	- 1	10 (27)	158 (31)	.65	Twins	0	0		5 (33.3)	29 (15.3)	.3
Vote: Data are presented	as mean ± SD	and n (%).					Note: Data are presented a	as mean ± SD :	and n (%).				
> Ar mi > IV > Ho pe	nong scarr F-PG oweve rsist.	patient iage ra S in wo er, per c	ts ≤ tes om cycl	37, Г en >3 le, the	VF-PG 7 impr e PGS a	S do ove adva	bes not imp d CIG and antage in th	rove LB ra nis ago	CIG, L ates. e group	B, o de	and oes no	ot	

Discussions

Aneuploid embryos can be identified accurately when gain or loss in one or more chromosomes are involved. Although mosaicism can be accurately detected in a model system, it is difficult to know exact number of cells biopsied, therefore, the extent of mosaicism in the specimen can only be estimated. Knowledge of mosaicism on D5/6 embryos is limited.

Present views on PGS are controversial. With PGS, improvement of overall IVF outcome, particularly for woman of advanced age, is not yet clear. Specific indications need to be identified, discussed with patients, number of "BIOPSIABLE" should be evaluated for each individual patient/PGS-Cycle.

PGS may not be applied for "ALL" patients

Rebiopsy maybe considered when there is a doubt on the results and the embryo quality appears to be "good".

Research on D5/6 mosaicism is urgently needed.

Artificial gametogenesis will address the issues.

Physicians <u>Rosenwaks Z, MD</u> Davis O, MD Cholst I, MD Chung PH, MD Goldschlag D, MD Kligman I, MD Schattman G, MD Elias R, MD Spandorfer S, MD Kang H, MD Pfeifer S, MD Reichman D, MD Goldstein M, MD Schlegal P, MD	PGD Xu KP, PhD Zhang CH, MD Wei JW, PhD. Sharma A, PhD Qin XE, MSc Fang B, BS Vega-Tazon B, PhD Handschuh K, PhD Li BS, PhD Victor A, MSc Xu BS, MSc Lin JW, MD, PhD Tavares R, MD Kan M, MD Singer T, MD WL Hsu, MD	Embryology Zaninovic N, PhD Clark B, PhD Ye Z, BS Park, J, BS Yin, H. PhD. Berrios R, BS Bodine R, BS Cook C, BS Hariprashad J, BS Norberg C, BS Jones S, BS Thompson N, BS Hao JY, BS Weiss D, BS Zhan A MD	Geneticists & Genetic Counselors Mathew S, PhD Lilienthal D, CGC Cahr M, CGC Andrology Palermo G, MD, PhD & his team Endocrinology Liu H-C, PhD
REI Fellows	And many others	Cheng J, BS others	& her team
Administration & Support Staffs Vazquez T	RGI, GenesisGenetics Natera, Reprogenetics	Nurse Team Libro J, RN and others	Reprod. Biology Bedford JM, PhD

